Given: sinθ = \(\frac{4}{5}\)
To find: cot θ + cosec θ
∵ sin2θ + cos2θ = 1
∴ cos2θ = 1 – sin2θ
⇒ cosθ = \(\sqrt{1-sin^2 θ}\)
⇒ cosθ = \(\sqrt{1-\Big(\frac{4}{5}\Big)^2}\) = \(\sqrt{1-\frac{16}{25}}\)
= \(\sqrt{1-\frac{25-16}{25}}\) = \(\sqrt{\frac{9}{25}}=\frac{3}{5}\)
Now, as cotθ = \(\frac{cosθ}{sinθ} = \frac{3/5}{4/5}=\frac{3}{4}\)
Also, cosecθ = \(\frac{1}{sinθ}=\frac{1}{4/5}=\frac{5}{4}\)
cotθ + cosecθ = \(\frac{3}{4}+\frac{5}{4}=\frac{3+5}{4}\) = \(\frac{8}{4}\) = 2