Given: cosθ = \(\frac{3}{4}\)
To find: 9 tan2θ + 9
∵ secθ = \(\frac{1}{cosθ}\) = \(\frac{4}{3}\)
∴ sec2θ = \(\Big(\frac{4}{3}\Big)^2\)= \(\frac{16}{9}\)
Also, we know that 1 + tan2θ = sec2θ
⇒ tan2θ = sec2θ - 1
=\(\frac{16}{9}\) - 1 = \(\frac{16-9}{9}\) = \(\frac{7}{9}\)
⇒ 9tan2θ + 9 = 9\(\Big(\frac{7}{9}\Big)\) + 9 = 7 + 9 = 16