1. H = \(\frac{u^2}{2g}\) ___(1)
u = u, v = o, a = -g, h = ?
We can find maximum height using the equation
u2 = u2 + 2as
0 = u2 + 2 × -g × H
2gh = u2
H = \(\frac{u^2}{2g}\)
2. Dimension of H = L
Dimension of u = (LT-1)
Dimensions of time (t) = T
Dimension of g = (LT-2)
substituting these values in equation (1) we get
L = \(\frac{(LT^{-1})^2}{LT^{-2}}\)
L = L.