∫ {cotx - cot3}x/(1+cot3x) dx
= \(\int\frac{cotx(1+cot^2x)}{1+cot^3x}\)dx
= \(\int\frac{cotx\,cosec^2x)}{1+cot^3x}\)dx
Put cot x = t,
-cosec2x dx = dt;
= \(-\int\frac{tdt}{t^3+1}\)
= \(-\int\frac{tdt}{(t+1)(t^2-t+1)}\)
By partial fractions it’s a remembering thing,
That if you see the above integral just apply the below return result,
