Given,
∫ 1/((sinx-2cosx)(2sinx+cosx))dx

Let tanx = t
\(\frac{d}{dx}\) (tanx) = dt
sec2x dx = dt
Now,
\(\int\frac{dt}{2t^2-3t-2}\)
= \(\int\frac{dt}{(2t+1)(t-2)}\)
Now,
\(\frac{1}{(2t+1)(t-2)}\) ≅ \(\frac{A}{2t+1}\) + \(\frac{B}{t-2}\)
1≅ A(t-2)+B(2t+1)
Equating ‘t’ coeff: -
0 = A + 2B
A = - 2B
Equating constant: -
1 = - 2A + B
1 = - 2(- 2B) + B
1 = 5B
B = \(\frac{1}{5}\)
A = \(\frac{-2}{5}\)
