Given 4m = cotx (1+ sinx) and 4n = cotx (1 – sinx)
Multiplying both equations, we get
⇒ 16mn = cot2x (1 – sin2x)
We know that 1 – sin2x = cos2x
⇒ 16mn = cot2x cos2x
⇒ mn = \(\cfrac{cos^4\text x}{16\,sin^2\text x}\)....(1)
Squaring the given equations and then subtracting,
⇒ 16m2 = cot2x (1+ sinx)2 and 16n2 = cot2x (1 – sinx)2
⇒ 16m2 – 16n2 = cot2x (4 sinx)

Squaring both sides,

From (1) and (2),
⇒ (m2 – n2)
= mn
Hence proved.