f(x) = 1/√(16-x2)
We know,
The square of a real number is never negative.
Clearly,
f(x) takes real values only when 16 – x2 ≥ 0
⇒ 16 ≥ x2
⇒ x2 ≤ 16
⇒ x2 – 16 ≤ 0
⇒ x2 – 42 ≤ 0
⇒ (x + 4)(x – 4) ≤ 0
⇒ x ≥ –4 and x ≤ 4
∴ x ∈ [–4, 4]
In addition,
f(x) is also undefined when 16 – x2 = 0 because denominator will be zero and the result will be indeterminate.
16 – x2 = 0
⇒ x = ±4
Hence,
x ∈ [–4, 4] – {–4, 4}
∴ x ∈ (–4, 4)
Thus,
Domain of f = (–4, 4)
Let f(x) = y

⇒ 1 = (16 – x2)y2
⇒ 1 = 16y2 – x2y2
⇒ x2y2 + 1 – 16y2 = 0
⇒ (y2)x2 + (0)x + (1–16y2) = 0
As x ∈ R,
The discriminant of this quadratic equation in x must be non-negative.
⇒ 02 – 4(y2)(1–16y2) ≥ 0
⇒ –4y2(1 – 16y2) ≥ 0
⇒ 4y2(1 – 16y2) ≤ 0
⇒ 1 – 16y2 ≤ 0
[∵ y2 ≥ 0]
⇒ 16y2 – 1 ≥ 0
⇒ (4y)2 – 12 ≥ 0
⇒ (4y + 1)(4y – 1) ≥ 0
⇒ 4y ≤ –1 and 4y ≥ 1

However,
y is always positive because it is the reciprocal of a non-zero square root.
