Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
we have,
sin x = \(\frac{1}2\)
We know that sin 30° = sin π/6 = 0.5
∴ sinx = sin\(\frac{π}6\)
∵ it matches with the form sin x = sin y
Hence
x = nπ + (-1)n \(\frac{π}3\), where n ϵ Z