The domain of cos−1 x is [−1, 1]
We know that cos-1x - cos-1y = cos-1(xy + \(\sqrt{1-x^2}\sqrt{1-y^2}\)).
If x ∈ [0, 1], then
\(cos^{-1}(\cfrac{x}2)-cos^{-1}x\) = \(cos^{-1}\Bigg(\cfrac{x^2}2+\sqrt{1-(\cfrac{x^2}4)}\Bigg)\)for x ∈ [0, 1].
Therefore, \(cos^{-1}\Bigg(\cfrac{x^2}2+\sqrt{1-(\cfrac{x^2}4)}\Bigg)\) = \(cos^{-1}(\cfrac{x}2)-cos^{-1}x\) is not valid x ∈ [0, 1].
If x ∈ [−1, 0], then replacing x by – x, we get

Therefore, \(cos^{-1}\Bigg(\cfrac{x^2}2+\sqrt{1-(\cfrac{x^2}4)}\Bigg)\) = \(cos^{-1}(\cfrac{x}2)-cos^{-1}x\) is not valid x ∈ [-1, 0].
Hence, \(cos^{-1}\Bigg(\cfrac{x^2}2+\sqrt{1-(\cfrac{x^2}4)}\Bigg)\) = \(cos^{-1}(\cfrac{x}2)-cos^{-1}x\) is valid for x ∈ [0, 1].