(c) \(\frac{5}2\)
Let the zeroes of the polynomial be α and α + 4
Here, p(x) = 4x2 – 8kx + 9
Comparing the given polynomial with ax2 + bx + c,
we get:
a = 4, b = -8k and c = 9
Now, sum of the roots = \(\frac{-b}a\)
⇒ α + α + 4 = \(\frac{-(-8)}4\)
⇒ 2α + 4 = 2k
⇒ α + 2 = k
⇒ α = (k – 2) ….(i)
Also, product of the roots, αβ = \(\frac{c}a\)
⇒ α (α + 4) = \(\frac{9}4\)
⇒ (k – 2) (k – 2 + 4) = \(\frac{9}4\)
⇒ (k – 2) (k + 2) = \(\frac{9}4\)
⇒ k2 – 4 = \(\frac{9}4\)
⇒ 4k2 – 16 = 9
⇒ 4k2 = 25
⇒ k2 = \(\frac{25}4\)
⇒ k = \(\frac{5}4\)
(∵ k >0)