Given,
2x + 6 ≥ 0 and 4x – 7 < 0
Let us consider the first inequality.
2x + 6 ≥ 0
⇒ 2x + 6 – 6 ≥ 0 – 6
⇒ 2x ≥ –6
⇒ \(\frac{2x}{2}\) ≥ \(\frac{-6}{2}\)
⇒ x ≥ –3
∴ x ∈ [–3, ∞) ...(1)
Now,
Let us consider the second inequality.
4x – 7 < 0
⇒ 4x – 7 + 7 < 0 + 7
⇒ 4x < 7
⇒ \(\frac{4x}{4}\) < \(\frac{7}{4}\)
⇒ x < \(\frac{7}{4}\)
∴ x ∈ (- ∞,\(\frac{7}{4}\)) ....(2)
From (1) and (2), we get
x ∈ [- 3,∞) ∩ (- ∞,\(\frac{7}{4}\))
∴ x ∈ [-3,\(\frac{7}{4}\))
Thus,
The solution of the given system of inequations is [-3,\(\frac{7}{4}\)).