Given,
5x – 7 < 3(x + 3) and 1 - 3x/2 ≥ x - 4
Let us consider the first inequality.
5x – 7 < 3(x + 3)
⇒ 5x – 7 < 3x + 9
⇒ 5x – 7 + 7 < 3x + 9 + 7
⇒ 5x < 3x + 16
⇒ 5x – 3x < 3x + 16 – 3x
⇒ 2x < 16
⇒ \(\frac{2x}{2}\) < \(\frac{16}{2}\)
⇒ x < 8
∴ x ∈ (–∞, 8) ...(1)
Now,
Let us consider the second inequality.
1 - \(\frac{3x}{2}\) ≥ x - 4
⇒ \(\frac{2-3x}{2}\) ≥ x - 4
⇒ \((\frac{2-3x}{2})\) \(\times\) 2 ≥ (x - 4) \(\times\) 2
⇒ 2 – 3x ≥ 2(x – 4)
⇒ 2 – 3x ≥ 2x – 8
⇒ 2 – 3x – 2 ≥ 2x – 8 – 2
⇒ –3x ≥ 2x – 10
⇒ 2x – 10 ≤ –3x
⇒ 2x – 10 + 10 ≤ –3x + 10
⇒ 2x ≤ –3x + 10
⇒ 2x + 3x ≤ –6x + 10 + 6x
⇒ 5x ≤ 10
⇒ \(\frac{5x}{5}\) ≤ \(\frac{10}{5}\)
⇒ x ≤ 2
∴ x ∈ (–∞, 2] ....(2)
From (1) and (2), we get
x ∈ (–∞, 8) ∩ (–∞, 2]
∴ x ∈ (–∞, 2]
Thus,
The solution of the given system of inequations is (–∞, 2].