Let p(n): 1 + 2 + 3 +…….+ n , Put n = 1 ⇒ p(1) = 1 < \(\frac{9}{8}\) which is true.
Assuming that true for p(k)
p(k): 1 + 2 + 3 +…….+ k < \(\frac{1}{8}\)(2k + 1)2
Let p(k +1): 1 + 2 + 3 +……..+ k + (k +1) < \(\frac{1}{8}\)
(2k + 1)2 + (k + 1)

Hence by using the principle of
mathematical induction true for all n ∈ N.