1. \(\frac{1+i}{1-i}\) x \(\frac{1+i}{1-i}\) = \(\frac{1 + 2i - 1}{2}\) = i
2. Polar form of the point P is 1(cos\(\frac{\pi}{2}\)+isin\(\frac{\pi}{2}\))
Polar form of the point Q is 1(cos\(\frac{\pi}{2}\)+isin\(\frac{\pi}{2}\))
3. i = 0 + i ⇒ √i = x + iy ⇒ i = x2 + y2 + 2xyi x2 + y2 = 0; 2xy = 1
(x2 + y2)2 = (x2 – y2)2 + 4x2y2
(x2 + y2)2 = 0 + (1)2 = 1
x2 + y2 = 1; x2 + y2 = 0
x = ± \(\frac{1}{\sqrt 2}\); y = ± \(\frac{1}{\sqrt 2}\)
Rots are \(\frac{1}{\sqrt 2}\) + i\(\frac{1}{\sqrt 2}\); - \(\frac{1}{\sqrt 2}\) - i\(\frac{1}{\sqrt 2}\)