1. A particular player A is to be included, then selection of 10 is to be made from 14 players.
The required number of ways 14C10 = 14C4 = \(\frac{14 \times 13 \times 12 \times 11}{1 \times 2 \times 3 \times 4}\) = 7 × 13 × 11 = 1001.
2. A particular player B is to be excluded, then selection of 11 is to be made from 14 players.
The required number of ways = 14C11 = 14C3 = \(\frac{14 \times 13 \times 12}{1 \times 2 \times 3}\)
= 14 × 13 × 2 = 364.
3. A particular player A is to be included and player B is to be excluded, then selection of 10 is to be made from 13 players. The required number of ways
= 13C10 = 13C3 = \(\frac{13 \times 12 \times 11}{1 \times 2 \times 3}\)
= 13 × 2 × 11 = 286.