1.
income |
xi |
fi |
xi - fi |
|xi - 358| |
|xi - 358| fi |
0- 100 |
50 |
4 |
200 |
308 |
1232 |
100-200 |
150 |
8 |
1200 |
208 |
1664 |
200-300 |
250 |
9 |
2250 |
108 |
972 |
300-400 |
350 |
10 |
3500 |
8 |
80 |
400-500 |
450 |
7 |
3150 |
92 |
644 |
500-600 |
550 |
5 |
2750 |
192 |
960 |
600-700 |
650 |
4 |
2600 |
292 |
1168 |
700-800 |
750 |
3 |
2250 |
392 |
1176 |
|
|
50 |
17900 |
|
7896 |
Mean = \(\bar x\) = \(\frac{\displaystyle\sum_{i=1}^{n} x_i f_i}{\displaystyle \sum_{i - 1}^{n}f_i}\) = \(\frac{17900}{50}\) = 358
M.D(\(\bar x\)) = \(\frac{\displaystyle\sum_{i=1}^{n}f_i|x_i - \bar x|}{\displaystyle \sum_{i - 1}^{n}f_i}\) = \(\frac{7896}{50}\) = 157.92
2.
Height |
xi |
fi |
xi - fi |
|xi - 125.3| |
|xi - 125.3| fi |
95-105 |
100 |
9 |
900 |
25.3 |
227.7 |
105-115 |
110 |
13 |
1430 |
15.3 |
198.9 |
115-125 |
120 |
26 |
3120 |
5.3 |
137.8 |
125-135 |
130 |
30 |
3900 |
4.7 |
141 |
135-145 |
140 |
12 |
1680 |
14.7 |
176.4 |
145-155 |
150 |
10 |
1500 |
24.7 |
247 |
|
|
100 |
12530 |
|
1128.8 |
Mean = \(\bar x\) = \(\frac{\displaystyle\sum_{i=1}^{n} x_i f_i}{\displaystyle \sum_{i - 1}^{n}f_i}\) = \(\frac{12530}{100} = 125.3\)
M.D (\(\bar x\)) = \(\frac{\displaystyle\sum_{i=1}^{n}f_i|x_i - \bar x|}{\displaystyle \sum_{i - 1}^{n}f_i}\) = \(\frac{1128.8}{100} = 11.28\)