(i).
Total number of balls bag containing is: 5 white + 6 red + 4 green = 15 balls
Number of green balls = 4.
Probability (P) = \(\frac{Number\,of\,favorable\,outcomes}{Total\,number\,of\,outcomes}\)
∴ Probability of getting a Green ball P(G)
= \(\frac{Number\,of\,Green\,balls}{Total\,number\,of\,balls}\) = \(\frac{4}{15}\)
(ii).
Total number of balls bag containing is: 5 white + 6 red + 4 green = 15 balls
Number of white balls = 5.
Probability (P) = \(\frac{Number\,of\,favorable\,outcomes}{Total\,number\,of\,outcomes}\)
∴ Probability of getting a white ball P(W)
= \(\frac{Number\,of\,White\,balls}{Total\,number\,of\,balls}\) = \(\frac{5}{15}=\frac{1}{3}\)
(iii).
Total number of balls bag containing is: 5 white + 6 red + 4 green = 15 balls
Number of outcomes (No Red) = 5 + 4 = 9, that is 5 white balls + 4 Green balls.
Probability (P) = \(\frac{Number\,of\,favorable\,outcomes}{Total\,number\,of\,outcomes}\)
∴ Probability of getting a Green ball P(G)
= \(\frac{Number\,of\,blue+White\,balls}{Total\,number\,of\,balls}\) = \(\frac{9}{15}=\frac{3}{5}\)