Let T indicate a term of the progression.T1, T2, T3, ..., Tn, ...T2nT1 = 1 T2 = a T3 = ca T4 = c.a2 T5 = c2.a2 Tk if k is even = \(\frac{k}{a^2}.\frac{k}{C^2}-1\)
T2n = \(\frac{2n}{a^2}\). \(\frac{2n}{C^2}-1\)
T2n = an. Cn-1
S2n = 1 + a + ca + c.a2 + c2.a2 + c2.a3 .....an. cn - 1= 1 + [ a + c.a2 + c2.a3.... + an.cn - 1]
+ [ca + c2.a2 + c3.a3..... + cn - 1.an - 1]The sum of a G.P. = \(\frac{a(r^{n-1})}{r-1}\)
For a + c.a2 + c2.a3.... + an.cn - 1
a = a, r = ca, n = n
⇒ \(\frac{a(ca^n-1)}{ca-1}\)
For [ ca + c2.a2 + c3.a3..... + cn - 1.an - 1]
a = ca, r = ca, n = n
⇒ \(\frac{ca(ca^n-1)}{ca-1}\)
∴ The required result = 1 + \(\frac{a(ca^n-1)}{ca-1}\) + \(\frac{ca(ca^n-1)}{ca-1}\)
⇒ \(\cfrac{a(ca^n-1)+ca(ca^{n-1}) + ca -1}{ca-1}\)