Given :
The sum of the 4th and the 8th terms of an A.P. is 24, and the sum of the 6th and 10th term is 34
⇒ a4 + a8 = 24 and
a6 + a10 = 34
We know,
an = a + (n – 1)d
Where a is first term or a1 and d is the common difference and n is any natural number
When n = 4 :
∴ a4 = a + (4 – 1)d
⇒ a4 = a + 3d
When n = 6 :
∴ a6 = a + (6 – 1)d
⇒ a6 = a + 5d
When n = 8 :
∴ a8 = a + (8 – 1)d
⇒ a8 = a + 7d
When n = 10 :
∴ a10 = a + (10 – 1)d
⇒ a10 = a + 9d
According to question :
a4 + a8 = 24
⇒ a + 3d + a + 7d = 24
⇒ 2a + 10d = 24
⇒ 2(a + 5d) = 24
⇒ a + 5d = \(\frac{24}{2}\)
⇒ a + 5d = 12………(i)
a6 + a10 = 34
⇒ a + 5d + a + 9d = 34
⇒ 2a + 14d = 34
⇒ 2(a + 7d) = 34
⇒ a + 7d = \(\frac{34}{2}\)
⇒ a + 7d = 17………(ii)
Subtracting equation (i) from (ii) :
a + 7d – (a + 5d) = 17 – 12
⇒ a + 7d – a – 5d = 5
⇒ 2d = 5
⇒ d = \(\frac{5}{2}\)
Put the value of d in equation (i) :

Hence,
The value of a and d are \(-\frac{1}{2}\) and \(\frac{5}{2}\) respectively.