It is given that 3 is a root of the quadratic equation x2 - x + k = 0
∴ (3)2 - 3 + k = 0
⇒ k + 6= 0
⇒ k = - 6
The roots of the equation x2 + 2kx + (k2 + 2k + p) = 0 are equal.
∴ D = 0
⇒ (2k)2 - 4 x 1 x (k2 + 2k + p) = 0
⇒ 4k2 - 4k2 - 8k - 4p = 0
⇒ -8k - 4p = 0
⇒ p = 8k/-4 = - 2k
⇒ p = - 2 x (-6) = 12
Hence, the value of p is 12.