(i) The given equation is kx2 + 6x + 1 = 0
∴ D = 62 -4 x k x 1 = 36 - 4k
The given equation has real and distinct roots if D > 0.
∴ 36 - 4k > 0
⇒ 4k, 36
⇒ k < 9
(ii) The given equation is x2 - kx + 9 = 0
∴ D = (-k)2 - 4 x 1 x 9 = k2 - 36
The given equation has real and distinct roots if D > 0.
∴ k2 - 36 > 0
⇒ (k - 6) (k + 6) > 0
⇒ k < -6 or k > 6
(iii) The given equation is 9x2 + 3kx + 4 = 0
∴ D = (3k)2 - 4 x 9 x 4 = 9k2 - 144
The given equation has real and distinct roots if D > 0.
∴ 9k2 - 144 > 0
⇒ 9(k2 - 16) > 0
⇒ (k - 4) ( k + 4) > 0
⇒ k < -4 or k > 4
(iv) The given equation is 5x2 - kx + 1 = 0
∴ D = (-k)2 - 4 x5 x 1 = k2 - 20
The given equation has real and distinct roots if D > 0
∴ k2 - 20 > 0
⇒ k2 - (2√5)2 > 0
⇒ (k - 2√5)(k + 2√5) > 0
⇒ k < - 2√5 or k > 2√5