Given: 9x2 – 16y2 = 144
To find: eccentricity(e), coordinates of the foci f(m,n), equation of directrix, length of latus-rectum of hyperbola.
9x2 – 16y2 = 144

Formula used:
For hyperbola \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)
Eccentricity(e) is given by,
e = \(\frac{c}{a}\), Where C = \(\sqrt{a^2 + b^2}\)
Foci is given by (±ae, 0)
Equation of directrix are: X = ± \(\frac{a}{e}\)
Length of latus rectum is \(\frac{2b^2}{a}\)
Here, a = 4 and b = 3

Foci: (±5, 0)
Equation of directrix are:

Length of latus rectum,
