LHS = A ∩ (A∪B)’
Using De-Morgan’s law (A∪B)’ = (A’ ∩ B’)
⇒ LHS = A ∩ (A’ ∩ B’)
⇒ LHS = (A ∩ A’) ∩ (A ∩ B’)
We know that A ∩ A’ = ϕ
⇒ LHS = ϕ ∩ (A ∩ B’)
We know that intersection of null set with any set is null set only
Let (A ∩ B’) be any set X hence
⇒ LHS = ϕ ∩ X
⇒ LHS = ϕ
⇒ LHS = RHS
Hence proved