To find: \(\lim\limits_{\theta \to0}
\cfrac{sin\,3\theta}{tan\,2\theta}\)
\(\lim\limits_{\theta \to0}
\cfrac{sin\,3\theta}{tan\,2\theta}\)
Multiplying and Dividing by 3θ in numerator & Multiplying and Dividing by 2θ in the denominator:

Now, put 3θ = y and 2θ = t

Hence, the value of \(\lim\limits_{\theta \to0}
\cfrac{sin\,3\theta}{tan\,2\theta}\) = \(\cfrac32\)