The various forces acting on the road roller are shown below in figure.
Let the force required to slide the roller be F. The component of the force F, to overcome the force of friction `f_(s)` is
`F cos theta = F cos theta 45^(@)=(F)/(sqrt(2)) " " (1)`
The force of friction `f_(s)= mu N ` where` N = mg - F sin theta`
substituting mg `=200xx10=2000 N`
` sin theta = sin = 45^(@)`
`N= 2000 -(F)/(sqrt(2))`
The frictional force `f_(s)`
`f_(s)= mu N = sqrt(2)xx(200-(F)/(sqrt(2)))`
`f_(s)=2000 sqrt(2)-F " " (2)`
Equationg (1) and (2)
`(F)/(sqrt(2))=2000 sqrt(2)-F`
`F=4000-sqrt(2)F`
`F=(4000)/(sqrt(2)+1)=(4000)/(sqrt(2)+1)xx(sqrt(2)-1)/(sqrt(2)-1)`
`=4xx414=1656N`
Applying the law of moments to the lever,
E `xx` effort arm = load `xx` load arm
`Exx1= 1656 xx 0.05`
`E=82.8 N ~= 83 N` (approximately)