We have \(\lim\limits_{\text x \to\pi/4} \cfrac{1-tan\text x}{1-\sqrt2\,sin \text x}\)
If x → \(\cfrac{\pi}4,\) then x - \(\cfrac{\pi}4\) = 0, let x - \(\cfrac{\pi}4\)→ y

Since,
tan(a + b) = \(\cfrac{tan\,a+tan\,b}{1-tan\,a.tan\,b}\)
sin(a + b) = sin a. cos b + cos a. sin b
By putting these , we get

Since, \(\cfrac{tan\,y}y\) = 1

Hence, \(\lim\limits_{\text x \to\pi/4} \cfrac{1-tan\text x}{1-\sqrt2\,sin \text x}\) = 2