To find: Expansion of (3x2 – 2ax + 3a2)3
Formula used: (i)
nCr = \(\frac{n!}{(n-r)!(r)!}\)
(ii) (a+b)n = nC0an + nC1an-1b + nC2an-2b2 + … +nCn-1abn-1 + nCnbn
We have, (3x2 – 2ax + 3a2)3
Let, (3x2 – 2ax) = p … (i)
The equation becomes (p + 3a2)3

We need the value of p3 and p2 , where p = 3x2 – 2ax
For, (a+b)3 , we have formula a3+b3+3a2b+3ab2
For, (3x2 – 2ax)3 , substituting a = 3x2 and b = –2ax in the above formula
⇒[(3x2)3] + [(-2ax)3] + [3(3x2)2(-2ax)] + [3(3x2)(-2ax)2]
⇒ 27x6 – 8a3x3 – 54ax5 + 36a2x 4 … (iii)
For, (a+b)2 , we have formula a2+2ab+b2
For, (3x2 – 2ax)3 , substituting a = 3x2 and b = –2ax in the above formula
⇒{(3x2)2] + [2(3x2)(-2ax)] +[(-2ax)2]
⇒ 9x4 – 12x3a + 4a2x2 … (iv)
Putting the value obtained from eqn. (iii) and (iv) in eqn. (ii)

⇒ 27x6 – 8a3x3 – 54ax5 + 36a2x4 + 81a2x4 – 108x3a 3 + 36a4x2 + 81a4x2 – 54a5x + 27a6
On rearranging
27x6 – 54ax5 + 117a2x4 – 116x3a3 + 117a4x2 – 54a5x + 27a6