To Find: General solution.
Given: tan3x - 3tanx = 0
⇒ tan x (tan2 x - 3) = 0
⇒ tan x = 0 or tan x = ± √3
⇒ tan x = 0 or tan x = (π/3) or tan x = tan (2π/3)
Formula used: tan θ = 0
⇒ θ = nπ, n ∈ l, tan θ = tan α
⇒ θ = kπ ± α, k ∈ l
So x = nπ or x = kπ + π/3 or x pπ + 2π/3 where n, k, p ∈ l
So general solution is x = nπ or x = kπ + π/3 or x = pπ + 2π/3 where n, k, p ∈ l