\(\cfrac{(sin7x\,+\,sin5x) +(sin9x\,+\,sin3x)}{(cos7x\,+\,cos5x)\,+\,(cos9x\,+\,cos3x)}\)

= \(\cfrac{sin6x}{cos6x}\)
= tan6x
Using the formula,
sinA + sinB = 2sin\(\frac{A\,+\,B}{2}\)cos\(\frac{A\,-\,B}{2}\)
cosA + cosB = 2cos\(\frac{A\,+\,B}{2}\)cos\(\frac{A\,-\,B}{2}\)