5x2 – 24xy – 5y2 + 4x + 58y – 59 = 0
Matrix of the quadratic equation is
\(A=\begin{bmatrix}5 & -12 & 2\\-12 & -5 & 29\\2 & 29 & -59\end{bmatrix}\)
|A| \(=\begin{bmatrix}5 & -12 & 2\\-12 & -5 & 29\\2 & 29 & -59\end{bmatrix}\)
= 5(295 – 841) + 12(708 – 58) + 2(–348 + 10)
= –2730 + 7800 – 676
= 4394 \(\ne\) 0
Now, \(A_{33}=\begin{bmatrix}5 & -12\\-12 & -5\end{bmatrix}\)
\(|A_{33}|\) = –25 – 144 = –169 < 0
\(\therefore\) Conic designed by given quadratic equation is a hyperbola.
5x2 – 24xy – 5y2 + 4x + 58y – 59 = 0 ..........(1)
A = 5, B = –24, C = –5
tan 2θ \(=\frac{B}{A-C}=\frac{-24}{5(-5)}\) \(=\frac{-24}{10}=\frac{-12}{5}\)
\(\frac{2\tan\theta}{1-\tan^2\theta}=\frac{-12}{5}\) \(\left(\because \tan2\theta =\frac{2\tan \theta}{1-\tan^2\theta}\right)\)
⇒ 12tan2θ – 10tan θ – 12 = 0
⇒ 6tan2θ – 5tan θ – 6 = 0
⇒ 6tan2θ – 9tan θ + 4tan θ – 6 = 0
⇒ (3tan θ + 2) (2tan θ – 3) = 0
⇒ tan θ = \(\frac{-2}{3}\) or \(\frac{3}{2}\)
let, tan θ \(=\frac{3}{2}\)
⇒ sin θ \(=\frac{3}{\sqrt{13}},\) cos θ \(=\frac{2}{\sqrt{13}}\)
x = x'cos θ – y'sin θ
\(=\frac{2}{\sqrt{13}}\mathrm x'-\frac{3}{\sqrt{13}}y'\)
And y = x'cos θ + y'sin θ
\(=\frac{2}{\sqrt{13}}\mathrm x' + \frac{3}{\sqrt{13}}y'\)
Substitute values of x and y in equation (1), we get
\(\frac{20}{13}\mathrm x'^2+\frac{45}{13}y'^2-\frac{60}{13}\mathrm x'y'\) \(-\frac{96}{13}\mathrm x'^2+\frac{216}{13}y'^2\) \(-\frac{20}{13}\mathrm x'^2-\frac{45}{13}y'^2\) \(+\frac{60}{13}\mathrm x'y'+\frac{8}{\sqrt{13}}\mathrm x' -\frac{12}{\sqrt{13}}y'\) \(+\frac{116}{\sqrt{13}}\mathrm x'+\frac{174}{\sqrt{13}}y' -59=0\)
\(\Rightarrow -\frac{96}{13}\mathrm x'^2+\frac{216}{13}y'^2+\frac{124}{\sqrt{13}}\mathrm x'\) \(+\frac{162}{\sqrt{13}}y'-59=0\)
Then convert it into (y' – a)2 – (x' – b)2 = 1