To Prove: 2sin \(22\frac{1^\circ}{2}\) cos\(22\frac{1^\circ}{2}\) = \(\frac{1}{\sqrt{2}}\)
Taking LHS,
2sin \(22\frac{1^\circ}{2}\) cos\(22\frac{1^\circ}{2}\) ....(i)
We know that,
2sinx cosx = sin 2x
Here, x = \(22\frac{1}{2}\) = \(\frac{45}{2}\)
So, eq. (i) become
= sin \(2(\frac{45}{2})\)
= sin 45°

= RHS
∴ LHS = RHS
Hence Proved