Given,
\(\begin{pmatrix} 2 & -3 & 5 \\ 3 &2&-4 \\ 1 &1 & -2 \end{pmatrix}\)
A -1 = \(\frac{1}{|A|}\)adj (A)
The determinant of matrix A is
|A| = \(\begin{pmatrix} 2 & -3 & 5 \\ 3 &2&-4 \\ 1 &1 & -2 \end{pmatrix}\)
= 2( 2 × - 2 – ( - 4) ×1) + 3(3× - 2 – ( - 4) ×1) + 5(3×1 – 2 × 1)
= 2( - 4 + 4 ) + 3( - 6 + 4 ) + 5( 3 – 2 )
= 2(0) + 3( - 2) + 5(1)
= - 6 + 5
= - 1
|A| ≠ 0
∴ A - 1 is possible.

A -1 = \(\frac{1}{|A|}\)adj (A)

Given set of lines are : -
2x – 3y + 5z = 11
3x + 2y – 4z = - 5
x + y – 2z = - 3
Converting following equations in matrix form,
AX = B
Where A

Pre - multiplying by A-1
A -1AX = A -1B
IX = A-1B
X = A-1B

∴ x = 1 , y = 2 , z = 3