Given:

To verify: A2 – 4 A-1 = 0
Firstly, we find the A2

Taking LHS of the given equation .i.e.
A2 – 4A - 1

= 0
= RHS
∴ LHS = RHS
Hence verified
Now, we have to find A-1
Finding A-1 using given equation
A2 – 4A – I = O
Post multiplying by A-1 both sides, we get
(A2 – 4A – I)A-1 = OA-1
⇒ A2.A-1 – 4A.A-1 – I.A-1 = O [OA -1 = O]
⇒ A.(AA-1) – 4I – A-1 = O [AA-1 = I]
⇒ A(I) – 4I – A-1 = O
⇒ A – 4I – A-1 = O
⇒ A – 4I – O = A-1
⇒ A – 4I = A-1

\(\begin{bmatrix}
-1& 2 \\[0.3em]
2& -3 \\[0.3em]
\end{bmatrix}
\)