Given function is \(f(x) = \begin{cases} x , & \quad \text{if } x≠0; \text{}\\ 1, & \quad \text{if } x=0\text{} \end{cases}\)
Left hand limit at x = 0

f(x) = x for other values of x expect 0 f(x) = 1,2,3,4…
Therefore,
f(x) is not continuous everywhere expect at x = 0