Let I = \(\int\frac{tan\,x}{(1-sin\,x)}dx\) = \(\int\frac{sin\,x}{cos\,x(1-sin\,x)}dx\)
Put t = sin x
dt = cosx dx

Now Putting 1-t = 0
t = 1
A(0) + B(0) + C(1 + 1) = 1
C = 1/2
Now Putting 1 + t = 0
t = -1
A(2)2 + B(0) + C(0) = -1
A = - 1/4
By equating the coefficient of t2,we get, A - B = 0
-1/4 - B = 0
B = - 1/4
From equation(1),we get,
