Let A {(x, y) ∈ x R | 2x2 2y2 - 2x - 2y =1},
B {(x, y) ∈ R x R | 4x2 4y2 - 16y + 7 = 0} and
C = {(x, y) ∈ R x R | X2 + y2 - 4x - 2y + 5 ≤ r2
Then the minimum value of r such that A \(\cup\) B \(\subseteq\) C is equal to
(1) \(\frac{3 + \sqrt{10}}{2}\)
(2) \(\frac{2+\sqrt{10}}{2}\)
(3) \(\frac{3 + 2\sqrt{5}}{2}\)
(4) 1 + \(\sqrt{5}\)