an+2 = 2an+1 + an has its characteristic equation as
x2 = 2x + 1
⇒ x = 1 ± √2
So, an = a(1 + √2)n−1 + b(1 − √2)n−1
∵ a1 = 1
⇒ a + b = 1
and a2 = 1
⇒ (a + b) + √2(a − b) = 1
⇒ a = \(\frac 12\) and \(b = \frac 12\)
So, an = \(\frac {(1 + \sqrt 2)^{n - 1}+ (1 - \sqrt 2)^{n - 1}}{2}\)
\(\sum \limits^{\infty}_{n = 1} \frac{a_n}{2^{3n}} = \frac 1{16} \left[ \sum\limits_{n = 1}^\infty \left(\frac{1 + \sqrt 2}8\right)^{n - 1} + \sum\limits_{n = 1}^\infty \left(\frac{1 - \sqrt 2}8\right)^{n - 1}\right]\)
\(=\frac 1{16} \left[ \frac 8{7 - \sqrt 2} + \frac 8{7 + \sqrt 2}\right]\)
\(= \frac 7{47}\)
\(\therefore 47 \sum \limits_{n= 1}^\infty \frac{a_n}{2^{3n}} = 7\)