Rearranging the terms we get:
\(\frac{cosx\,dx}{(1+sinx)}\) = \(\frac{cosy\,dy}{(1+siny)}\)
Integrating both the sides we get:
⇒ \(\int\frac{cosx\,dx}{(1+sinx)}\) = \(\int\frac{cosy\,dy}{(1+siny)}\) + c
⇒ log|1 + sin x| = - log|1 + cos y| + log c
⇒ log|1 + sin x| + log|1 + cos y| = log c
⇒ (1 + sin x)(1 + cos y) = c
Ans: (1 + sin x)(1 + cos y) = c