Rearranging the terms we get:

Integrating both the sides we get:
⇒ \(\int{dy}\) = \(\int{2x\,dx}\) + \(\int\frac{1}{x}dx\) + c
⇒ y = x2 + log|x| + c
y = 1 when x = 1
∴1 = 12 + log1 + c
∴1 - 1 = 0 + c …(log1 = 0)
⇒ c = 0
∴y = x2 + log|x|
Ans: y = x2 + log |x|