\(\frac{1}{tan^{-1}x.(1+x^2)}dx\) + \(\frac{1}ydy\) = 0
Integrating,
\(\int\frac{1}{tan^{-1}x.(1+x^2)}dx\) + \(\int\frac{1}ydy\) = c
Consider the integral
\(\int\frac{1}{tan^{-1}x.(1+x^2)}dx\)
Let tan-1x = t
So, \(\frac{1}{1+x^2}dx\) = dt
\(\int\frac{1}{tan^{-1}x.(1+x^2)}dx\) = \(\int\frac{t}ydt\)
logt
log(tan-1x)
Consider the integral \(\int\frac{t}ydt\)
log y
Therefore the solution of the differential equation is
log(tan-1x) + logy = log c
tan-1x.y = c