`nP_m` stands form `P_m=(n!)/((n-m)!)`
`m<=n`<br>
n,m shall be there
n,m=0,1,2,3...
`x-3<=7-x`<br>
`2x<=10`<br>
`x<=5`<br>
0,1,2,3,4,5.
`7-x>=0,x-3>=0`
`x<=T` at `x>=3`
`f(x)=((7-x)!)/((10-2x)!)`
`f(3)=(4!)/(4!)=1`
`f(4)=(3!)/(2!)=3`
`f(5)=(2!)/(0!)=2`
Range{1,2,3}
option 3 is correct.