Given Differential Equation :
\(2x\frac{dy}{dx} +y =\,6x^3\)
Formula :
i) \(\int \frac {1}{x}\) dx = log x
ii) \(\int x^n dx\) \(\frac {x^{n+1}}{n+1} +c\)
iii) a log b = log ba
vi) a logab = b
v) General solution :
For the differential equation in the form of
\(\frac {dy}{dx} +py =Q\)
The general solution is given by,
y. (I. F.) = \(\int\) Q (I. F.) dx + c
Where integrating factor,
I. F. = \(e^{\int p\,dx}\)
Given differential equation is
\(2x \frac {dy}{dx} + y 6^3\)
Dividing the above equation by 2x,
\(\frac {dy}{dx}+\frac{1} {2x}. y \,3x^2 \) ………eq(1)
Equation (1) is of the form
\(\frac {dy}{dx} +py =Q\)
Where, \(P = \frac {1}{2x} \) and = 3x2
Therefore, integrating factor is
