Prove that
\(f(x) = \begin{cases} 2x+1, & \quad \text{when } 0 \le x\le2\\ x^2+1, & \quad \text{when} \,2\le x\le3 \end{cases}\)
Show that \(\int\limits_1^3(x)dx=\cfrac{34}{3}\)
f (x)= {(2x+1, when 1≤ x≤2) ,
(x2+1, when 2 ≤ x ≤3)
∫ f(x)dx=34/3.,x ∈[1,3]