According to Kirchhoff’s first law the distribution of currents is shown in fig.

Applying Kirchhoff’s second law to mesh BADB,
–2(i – i1) + 2 – 1 – 1. (i – i1) + 2i1 = 0
⇒ 3i – 5i1 = 1 …(i)
Applying Kirchhoff’s law to mesh DCBD,
–3i + 3 – 1 – 1× i – 2i1 = 0
⇒ 4i + 2i1 = 2
Or 2i + i1 = 1 …(ii)
Multiplying equation (ii) with 5, we get
10i + 5i1 = 5 …(iii)
Adding (i) and (iii), we get
\(13i=6\Rightarrow i=\frac{6}{13}A\)
From (ii), \(i_1=1-2i=1-\frac{12}{13}=\frac{1}{13}A\)
Potential difference between B and D is
\(V_B-V_D=i_1\times2=\frac{2}{13}V\)