We know that the distance of any point on the parabola from its focus and its directrix is same.
(i) Given that, directrix, x = 0 and focus = (6, 0)
So, for any point P(x, y) on the parabola
Distance of P from directrix = Distance of P from focus
=> x2 = (x — 6)2 + y2
=> y2 – 12x + 36 = 0
(ii) Given that, vertex = (0,4) and focus = (0, 2)
Now distance between the vertex and directrix is same as the distance between the vertex and focus.
Directrix is y – 6 = 0
For any point of P(x, y) on the parabola
Distance of P from directrix = Distance of P from focus
