Let the radius of circle be r, then the radius of

semicircle be \(\frac{r}{2},\)
Area of circle = πr2
Area of semi circle = \(\frac{1}{2}\pi(\frac{r}{2})^2=\pi\frac{r^2}{8}\)
2 x Area of semi circle = 2 x \(\pi \frac{r^2}{8}=\pi\frac{r^2}{4}\)
Area of circle without semi circle = \(\pi r^2-\frac{\pi r^2}{4}=\frac{3\pi r^2}{4}\)
∴ Probablity of the dot falling on the semi - circle = \(\frac{\frac{\pi r^2}{4}}{\frac{4}{\pi r^2}}=\frac{1}{4}\)
Probablity of the dot falling inside of any semicircle is = \(\frac{\frac{\pi r^2}{8}}{\pi r^2}=\frac{1}{8}\)
Probablity of the dot falling outside of semicircle = \(\frac{\frac{3\pi r^2}{4}}{\pi r^2}=\frac{3}{4}\)