Correct option is (3) 2√6
Direction ratio's of given line
\(\begin{vmatrix} \hat i&\hat j&\hat k\\0&3&-2\\3&0&-1\end{vmatrix} = \hat i (-3) - \hat j(6) + \hat k (-9)\)
\(= -3\hat i - 6\hat j - 9\hat k\)
Let z = 0
⇒ y = \(\frac 13\) and x = \(-\frac 43\)
∴ Line in Cartesian form is
\(\cfrac{x + \frac 43}{-3} = \cfrac{y - \frac 13}{-6} = \cfrac z{-9}\)
Let point of shortest distance be P(λ) i.e.
\(P(-\lambda - \frac 43, -2\lambda + \frac 13, -3\lambda)\) and \(Q(2, -1,6)\)
For shortest distance
\(\vec {PQ} . (\hat i + 2\hat j + 3\hat k) = 0\)
\(\left((\frac {10}3 + \lambda)\hat i + (2\lambda - \frac 43) \hat j + (6 + 3\lambda)\hat k\right).(\hat i + 2\hat j + 3\hat k) = 0\)
⇒ \(\lambda = -\frac 43\)
\(\therefore P = (0,3,4)\)
\(\therefore |PQ| = 2\sqrt 6\)