If for x, y ∈ R, x > 0, y = log10x + log10x1/3 + log10x1/9 + ..... upto ∞ terms and \(\frac{2+4+6+...+2y}{3+6+9+...+3y}\) = \(\frac{4}{log_{10}x}\),then the ordered pair (x, y) is equal to :
(2+4+6+...+2y)/(3+6+9+...+3y)=4/log10x
(1) (106,6)
(2) (104,6)
(3) (102,3)
(4) (106,9)