Correct Answer - D
We find that `P(E_(1))=(6)/(36),P(E_(2))=(6)/(36)=(1)/(6)`,
`P(E_(3))=(1)/(2),P(E_(1) cap E_(2))=(1)/(36), P(E_(2) cap E_(3))=(3)/(36)=(1)/(12)`,
`P(E_(1) cap E_(3))=(3)/(36)=(1)/(12) " and " P(E_(1) cap E_(2) cap E_(3))=0`
Clearly, `P(E_(1) cap E_(2))=P(E_(1))P(E_(2)) implies E_(1), E_(2)` are independent
`P(E_(1) cap E_(3))=P(E_(1))P(E_(3)) implies E_(1), E_(3)` are independent
But, `P(E_(1) cap E_(2) cap E_(3)) ne P(E_(1))P(E_(2))P(E_(3))`
`implies E_(1),E_(2),E_(3)` are not independent
Thus, option (d) is incorrect.