Let ABCD be the given square with each side equal to 10 cm. Let E, F, G, H be the midpoints of the sides AB, BC, CD and DA respectively. Let P, Q, R, S be the midpoints of the sides EF, FG, GH and HE respectively.
`:. BE=BF=5` cm
`rArr EF=sqrt(BE^(2)+BF^(2))=sqrt(25+25) cm`
`=sqrt(50)` cm `=5sqrt(2)` cm.
`:. FQ=FP=1/2 EF =(5sqrt(2))/2 cm=5/sqrt(2)` cm
`rArr PQ=sqrt(FP^(2)+FQ^(2))=sqrt(25/2+25/2) cm=sqrt(25) cm= 5cm`
Thus, the sides of the squres are 10 cm, `5sqrt(2)` cm, 5 cm, ...
(i) Sum of the areas of the squares formed
`={(10)^(2)+(5sqrt(2))^(2)+5^(2)+...oo} cm^(2)`
`=(100+50+25+...oo) cm^(2)`
`=100/((1-1/2))cm^(2)=200 cm^(2) [("taking the sum of infinite GP"),("With "a=100 and r=1/2)]`.
(ii) Sum of perimeters of the squares formed
`=(40+20sqrt(2)+20+...) cm`
`=40/((1-1/sqrt(2))) cm=(40sqrt(2))/((sqrt(2)-1))xx((sqrt(2)+1))/((sqrt(2)+1)) cm=(80+40sqrt(2)) cm`.
